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Formulas  are  proposed for an analysis  of the local and mean heat  exchange on the initial t he r -  
mal section for stabilized turbulent air  flow in c i rcu lar  pipes and rectangular  channels on the 
basis  of an extension of test  resul ts .  

The regular i t ies  of the heat exchange p rocess  on the initial thermal section in pipes for a turbulent 
flow mode of the a i r  s t ream and a completely developed profile of the velocity field have been investigated 
in detail both theoret ical ly and experimental ly [5, 8, 10, 11]. In the standard formulation the problem is 
reduced to determining the dependence aX1 = aX aoo in which the cor rec t ion  "in the initial section" eX1 is 

i 
a function of the Reynolds number and a dimensionless  coordinate measured  f rom the beginning of the heat -  
ing eXl = f(Red; Xi/d). A compar ison between numerical  solutions and test  data of var ious authors in [6] 
shows that the stabilization of local heat exchange is per formed within a length equal to fifteen to twenty 
equivalent diameters .* The following singulari t ies  are hence observed in the configurations of the curves 
e X = f(Red; X1/d). In the domain of the initial thermal section investigated best,  where X1/d = 1.5-20, the 
cor rec t ions  eX1 are lowered smoothly f rom 1.2-1.4 to one and depend slightly on the Reynolds number.  
The resul ts  of the majori ty  of papers  can here be general ized,  with a =~ 10% e r r o r ,  as a function of just 
X1/d. Relationships of the type mentioned have been proposed in [5, 6], say. For  X1/d < 1.5 the cor rec t ions  
eXi grow rapidly to the values 2-3 in di rect  proximity to the beginning of the heating. The role of the 
Reynolds number has also been magnified substantially. The quantity of experimental  resul ts  in this a rea  
is res t r ic ted ,  and analytical solutions diverge f rom experiment  and between themselves  by 30-50% and 
more .  It should be noted that the published material  on the heat exchange in the initial thermal section 
re fe r  p r imar i ly  to c i rcu la r  pipes. Only the theoretical  solution [8], wherein a plane-paral lel  channel is 
examined, is the exception. 

Heat exchange in the initial thermal sections of four rectangular  channels is studied herein for small 
X/d.  The geometr ic  charac te r i s t i c s  of the channels, presented in Table 1, were cbosen in such a way as 
to include the grea tes t  possible interval in the pa ramete r  A/B. The tests  were per formed in a wide tunnel 
with experimental  section placed at the intake of the flow-through par t  [3]. The test  stand as su res  a W = 1- 
60 m / s e c  s t ream velocity at an air  tempera ture  of T o = 290-293~ 

* Strict ly speaking, the cor rec t ions  eX1 become one at infinity, however,  for X1/d = 20 the discrepancy 
between aX1 and a~o does not even exceed 2.5%. 

TABLE 1. 
nel s 

Parameters 

Geometrical  Charac ter i s t ics  of the Rectangular  Chan- 

Notation 

Equivalent diameter, m d. lO a 
A.IO 3 

Ratio between the sides B. 10 s 

40 

40 
~-6=I 

Number of the channel 

33,3 

100 
9 = 5  

3 4 

13,8 3,84 
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Fig. 1. Distribution of the heat exchange intensity along the middle line of thewide 
wall of channel No. 2 {calorimeter No. 4, Re d = 55,000:1) inlet with a sharp edge 
with a 90 ~ angle; 2) inlet edge rounded off on the arc  of a circle  

Fig. 2. Distribution of the heat exchange intensity ((p = c~c/a:~) over the channel 

pe r imete r ,  a) Channel No. 1, Re d = 50,000;b) Channel No. 2, Re d = 50,000; c) the 
dependence r = f (Red) [1) channel No. 1; 2) channel No. 2]. 

The heat exchange coefficients at different dis tances from the inlet and at different points of the pe r i -  
meter  were measured  by a nonstationary method on one of the channel walls  [2]. Exactly as in [2], plates 
of CT35 steel with imbedded Ohromel -Alumel  thermocouples  with 0.1 mm diameter  leads were used as 
alpha ca lor imete rs .  The geometr ic  dimensions of the alpha ca lo r imete r s  are presented in Table 2. The 
magnitudes of the heat exchange coefficients ~c  determined in the experiments  are mean values in X for 
W w = const. 

The inlet profile on the channels was varied in the tests .  It is shown in Fig. 1 how the heat exchange 
coefficient ~c changes along the middle line of the wide wall of channel No. 2 for a sharp inlet edge with a 
90 ~ angle and an inlet edge rounded off along the a rc  of a circle  as a function of the extent of the adiabatic 
section lying ahead of the ca lor imeter .  The sharp edge causes  separation and rapid turbulization of the 
boundary layer .  The heat exchange intensity is stabilized at X0/d ~ 10 by gradually being reduced after  
the separat ion maximum. 

In the second ease the curve ~c /ac  ~ indicates a mixed flow, and stabilization sets in only for X0/d ~ 15. 
Duplication of the measurement  resul ts  at some distance f rom the inlet is a c r i te r ion  of a hydrodynamical ly 
stabilized flow. Later ,  heat exchange resul ts  obtained in precise ly  this domain will be examined. In all 

T A B L E  2 .  G e o m e t r i c  C h a r a c t e r i s t i c s  o f  t h e  A l p h a - C a l o r i m e t e r s  

Notation Parameters 

X. 10 s 
Z. 108 

X 
d 

1 

2,0 
5,1 

~,06 

Numbet  of the calorimeter  
2 

2,34 
7 , 9  

0,17 

3 

5,2 
5,1 

0,13 

I 0 , 1 5 (  

4 

7,5 
15,0 

0,225 

0,544 
1,95 

5 

14,7 
14,9 

0,442 

Dimensions of the active 
calor imeter  surface, m 

Reduced calor imeter  
length * 
Channel  No. 1 

Channel  No. 2 

Channel  No. 8 
Channel  No. 4 

6 

19,2 
19,8 

0,575 

*Only the combinations of X/d are indicated which were used ha the tests. 
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cases  the length of the unheated section located ahead of the ca lo r imete r  would not be less  than 20d. The 
reduced length of the heated section varied within the l imits  X/d = 0.06-1.95 (Table 2). 

Presented  in Figs.  2a and b are  typical distr ibutions of the heat exchange coefficients in the t r ans -  
verse  direct ion in the hydrodynamic stabilization domain for channels with a 1:1 and 5 :1  rat io between the 
sides. The dashed lines for the adjoining sides have been constructed under the assumption that the heat 
exchange in the corner  is symmet r i c  to its vertex.  Such an approach is verif ied sufficiently well in [7] 
where the velocity fields have been computed for a number of rectangular  channels. The main par t  of the 
measurements  was per formed with the ca lo r ime te r s  placed on the axial line of the wide wall of the chan- 
nels. The mean heat exchange coefficients with respec t  to the pe r ime te r  have been obtained by using c o r -  
rect ions for the nonuniformity of the heat exchange over  the pe r ime te r  ~0- As is seen f rom Fig. 2c, the 
quantity e0 is close to one and pract ical ly  independent of A/B.  

The experimental  heat  exchange coefficients r e f e r  to the tempera ture  head AT 0. It can be shown 
that the tempera ture  head AT 0 in a channel with constant wall tempera ture  along the length and pe r imete r  
is related to the mean logar i thmic tempera ture  head by means of the express ion 

4St X 
ATl d 

AT--~- = In 1 (1) 

1- -  4St --X 
d 

Because of the smal lness  of the quantities X/d  the ra t ios  AT l / A T  0 are 0.995-0.975 under the experiment  
conditions. 

Taking account of the cor rec t ion  ~0 and the cor rec t ion  for  the mean logari thmic tempera ture  head, 
the heat exchange coefficients c~ were  processed  in the cr i ter ia l  dependence Nux(d/X) ~176 = f (Rex) , where 
the ca lo r imete r  dimension along the s t ream flow X was taken as governing. In a logari thmic anamorphosis ,  
the dependence Nu X (d/X) ~176 = f (Rex) unites all test  points with a ~ 10% spread,  as well as the data on the 

TABLE 3. 
change 

100001 5,10 
50000 3,73 

100000 3,26 

Correct ion Factor  s X to Compute the Mean Heat Ex-  

0,1 0,5 

4'10 t 2'48 3,01 1,92 
2,65 1,83 

X/d 

l,O 2,0 I 5,0 10 
I 

2,02 1,67 1,39 1,26 
1,69 1,53 1,36 1,25 
1,66 1,51 1,34 1,24 

15 20 30 I 40 ] 50 60 

:o8 1,o5 .o2ji,00 1, 1,15 ,09 
l, 1,14 I 09 1,05 11,02 1,00 
1,18 1,13 I t,05 1,02 1,00 
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Fig. 4. The dependence sX1 = f (X1/d; Re d) for thelocal  
heat exchange in the initial section: a) computation by 
means of (12): 1) Re d = 10,000; 2) 50,000; 3) 100,000; 
b) compar ison with the resul ts  of analytic solutions: 1) 
by means of (12), Re d = 50,000; 2) Sparrow [11] solu-  
tion, Re d = 50,000; 3) Deiss le r  solution [8], Re d 
= 30,000. 

mean heat  exchange for c i r cu la r  pipes taken f rom [5] and [10]* (see Fig. 3, curve 1). 
general izing curve inc reases  together with the Reynolds number.  For  small Re X the deviation is about 
0.6, and la ter ,  for Re X 30,000 it approaches 0.8 asymptotical ly.  The equation approximating the curve I 
in the Re X = 2.102-4.10 ~ range appears  to be the following: 

The steepness of the 

(2) 

By approximating the curve I by par ts ,  simple formulas  can be obtained: 

f o r  Re X < 25,000 

/X'~ o:~. 
Nux-- 0.22Re~ 6 ~ d ]  ' (3) 

for Rex>  25,000 

Nux = O.O29Re~8 (-X) ~176 (4) 

Tests  have verified (2) within the l imits X/d = 0.06-60.0, Re d = 3 -103-100.103, and P r  = 0.707 and it 
l imits  the extent of the initial thermal section to X/d  < 60. If X/d > 60, the computation must  be made by 
the equation for the stabilized heat exchange in c i rcu la r  pipes and channels of noncircular  c ross  section 
[4] 

Nu~ = 0.018Re ~ . (5) 

The dependence (5) is verified in [4] by experimental  resul ts  for rec tangular  channels in the range 
A / B  = 1-17.8, Re d > 104 . 

Equations (2) and (5) permi t  a cor rec t ion  formula  to be obtained for the computation of the mean heat 
exchange 

* Test  data on the mean heat exchange are presented in [10] in tabular form as a function of X/d. They 
were  processed  at Re d = 50,000, which corresponds  to the middle of the range investigated in [10]. 
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e x =  4.45Re~ -~ .10 (6) 

Values of the co r rec t ion  ~X in the function X/d  and the Reynolds number  needed for  engineer ing ca l -  
culations a re  given in Table 3. 

Since (5) is  appl icable  only for  the developed turbulent  flow domain,  then (6) becomes  meaning less  for 
Re d < 104. The mean heat  exchange in the Re d -- 3.103-104 band should be computed d i rec t ly  by means  of 
(2). 

A theoret ica l  ana lys is  of the mean heat  exchange on shor t  su r faces  in X with a constant  wall t e m -  
pe ra tu re  has  been p e r f o r m e d  in [9]. The case is considered when the the rmal  boundary l aye r  is complete ly  
within the l amina r  sublayer .  As has been shown in [9], the heat  exchange intensi ty is hence de te rmined  by 
the magnitude of the tangential s t r e s s e s  at the wall 

I ! 
[XZ~"  T 

The mean tangential s t r e s s  over  the p e r i m e t e r  is calculated by the Blas ius  law for  s tabi l ized turbulent  
flow in pipes and rec tangu la r  channels:  

8v w 0 .316  

~ l~e ]  .~5 �9 (8) 

After  subst i tut ing (8) and (7) and conver t ing to the governing dimension X for  the Prandt i  number  
0.707, we obtain 

( 9 )  Nux =0.245Re~SSs ( X )  ~176 

The heat  exchange coefficient  in (7) and (9) is r e f e r r e d  to the t e m p e r a t u r e  head AT 0. It  has  been 
r e m a r k e d  above that for  smal l  X the ra t io  A T / / A T  0 is a lmos t  one, and this means  that a d i r ec t  compar i son  
between (9) and (3) turns  out to be poss ib le .  The curve  II computed by means  of (9) ag r ee s  with curve I 
to 5% accu racy  in Fig. 3. 

I t  is  per t inent  to turn attention to the fact  that the m e a s u r e m e n t s  in [5] co r respond  to a constant  wall  
t e m p e r a t u r e ,  and in [10] to a constant  heat  flux. Judging by the r e su l t s  of a genera l iza t ion  of the mean 
heat  exchange coeff ic ients ,  the boundary conditions exer t  no noticeable influence on the heat  exchange of 
the initial the rmal  section.  

A subsequent  ana lys i s  of the local heat  exchange on the initial the rmal  sect ion has  been p e r f o r m e d  
by di f ferent ia t ing the express ion  for  the mean heat  exchange coefficient  resu l t ing  f rom (2). After  d i f -  
ferent ia t ion and reduct ion of the fo rmula  to e r i t e r i a l  fo rm,  we obtain 

0-1 (lg Rex, --4.4) ] 

-k V (lgRex _4.4)~_l_O.l 5 J �9 (10) 

Curve III in Fig. 3 co r r e sponds  to (10). Superposed there  a re  exper imenta l  r e su l t s  on the local heat  ex -  
change in c i r cu l a r  pipes taken f r o m  [5, 10]. The sp read  of the exper imenta l  points re la t ive  to curve  III does 
not exceed • 10%. The re fo re ,  the se lect ion of the equivalent  d i ame te r  as p a r a m e t e r  cha rac te r i z ing  the 
c r o s s  sect ion p e r m i t s  extension of the tes t  data on the mean and local heat  exchange in c i r cu l a r  pipes and 
rec tangu la r  channels.  In o rde r  to s impl i fy  the computational opera t ions ,  curve III in Fig. 3 has been ap-  
p rox imated  by an equation s i m i l a r  in s t ruc tu re  to the equation [2]: 

Nux, = 0.062Re~7 .10 o. 2 V (lg ~ex,-3.9~ ,+o.o2 (11 ) 

F o r m u l a s  (10) and (11) agree  to 2% accuracy  within the in terval  Rex1 = 2.102-2 -10 ~. 
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By using (11) and (5), we can a r r ive ,  in the long run, at an express ion  for the cor rec t ion  sX1 

o., V (12) 
ex = 3A5Re -o.' l0 

Graphs constructed by means of (12) are  presented  in Fig. 4a, which show that stabil ization of the 
local heat exchange occurs  at the length X1/d = 16.5. F o r  RedX1/d ~ 104 the cor rec t ion  eX1 depends only on 
X1/d and agrees  well with the computation using a formula  proposed in [11] 

ex =1.38(~---~) -~ . (13) 

A compar ison  with the resu l t s  of theoret ical  solutions for  c i rcu la r  pipes in Fig. 4b shows that (12) actually 
conf i rms the resu l t s  in [11] for  X1/d > 0.5 and agrees  well with the solution in [8] for  Xl /d  < 0.5. 

A 
B 
d 
X0 
X 
X1 
Z 
W 

To 
Ww 
AT 0 

AT/ 
~ C  

aX  

aX 

0/0o 

Re d = w d / v  

Re X = wX/v; RexI= wXl/v 
Nu X = axX/~. , NUx1 = aX Xl/X 
Nu: o = ~ o d / k  

eX = ~ X / a  ~o, ~X 1 = aX~/~,o 

St = ~ X1/wp c 

T w 
0 ' 

r = a j a  X 

N O T A T I O N  

channel width, m; 
channel height, m; 
equivalent channel d iameter ,  m; 
extent of the initial adiabatic section, m; 
total heated length, ~ m; 
running coordinate along the heated length; 
cross-f low dimension of the ca lo r imete r ,  m; 
mean flow ra te ,  m / sec ;  
a i r  t empera ture  at the inlet,  ~ 
wall t empera ture ,  ~ 
t empera tu re  head,  calculated by means of the a i r  t empera tu re  at the inlet,  

~ 
mean logari thmic t empera tu re  head,  ~ 
coefficient  of ca lo r ime te r  heat  exchange, W / m  2 .deg; 
heat  exchange coefficient  of a ca lo r ime te r  located on the axial line of the 

wall in the stabil ized flow zone, W /m  2 .deg; 
mean heat exchange coefficient  over  the length and the p e r im e t e r  of the 

channel, W / m  2 .deg; 
mean heat exchange coefficient  over  the length and the p e r im e t e r  r e f e r r e d  

to AT0, W/m ~ .deg; 
local heat  exchange coefficient  averaged over  the channel pe r ime te r ,  W 

/ m  2 .deg; 
heat  exchange coefficient  in the stabil ized heat exchange domain, W / m  2 

.deg; 
Reynolds number  computed with respec t  to the equivalent channel d iame-  

ter ;  
Reynolds number computed with respec t  to the lengths X and X1; 
mean and local Nussel t  numbers;  

Nussel t  number computed for the stabil ized heat exchange domain; 
cor rec t ion  fac tors  to compute the mean and local heat exchange; 

Stanton number;  

tangential s t r e s s  on the wall,  N/m2; 

ra t io  between the heat exchange coefficient measured  on the axial line of 
the wall and the mean value over  the pe r ime te r .  
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